Basics of Bayesian Inference

\[\begin{gather*} \pi_\text{joint}(y, \theta) = \pi_\text{obs}(y | \theta) \pi_\text{prior}(\theta)\\ \pi_\text{marg}\left(y \right) = \int_\Theta \mathrm{d} \theta \: \pi_{\text{obs}}(y | \theta) \pi_\text{prior}(\theta)\\ \pi_\text{post}(\theta | y) = \frac{\pi_\text{obs}(y | \theta) \pi_\text{prior}(\theta)}{\pi_\text{marg}\left(y \right)}. \end{gather*}\]

\[ y \sim N(\mu,\sigma) \\ \mu \sim N(0, 1) \\ \sigma \sim HalfN(0, 2) \]

Basics of Stan

The tasks

Summary after tasks