Main Influences
Deborah Mayo
Andrew Gelman
Stan community more broadly
Berna Devezer
Danielle J. Navarro
2025-05-13
Modified from http://www.ForestWander.com, CC BY-SA 3.0 US, via Wikimedia Commons, https://mc-stan.org/bayesplot/
Philafrenzy, CC BY-SA 4.0, via Wikimedia Commons, [2][3], Public domain, via Wikimedia Commons, Gnathan87, CC0, via Wikimedia Commons
No shaming our subjective/objective Bayesian friends!
Epistemology / philsci is not solved
Deborah Mayo
Andrew Gelman
Stan community more broadly
Berna Devezer
Danielle J. Navarro
Ag2gaeh, CC BY-SA 4.0, via Wikimedia Commons
\[ y \sim \text{Binomial}(20, \theta) \]
Modified from Smahdavi4, CC BY-SA 4.0, via Wikimedia Commons
We do not live in asymptotic utopia
Fitting a negative binomial model, with 4 observations per group:
Frequentist via MASS
package:
Frequentist via gamlss
package:
Bayesian with flat prior via brms
package:
KF, Public domain, via Wikimedia Commons
TeWeBs, CC BY-SA 4.0, via Wikimedia Commons
10 patients get sick, 10 recover. What is the likely recovery probability?
Should your inference change if you learn that the experimenter would only ever report the results to you if everybody recovered?
In Bayesian statistics it should not! 🤯
\[ \pi_\text{post}(\theta \mid y, \text{ accept(y)}) = \pi_\text{post}(\theta \mid y) \]
Frequentist simulation:
prob_recovery = some_number
repeat {
y = binomial_rng(N = 10, prob = prob_recovery)
if(y == 10) then break
}
Bayesian simulation:
repeat {
prob_recovery = prior_rng()
y = binomial_rng(N = 10, prob = prob_recovery)
if(y == 10) then break
}
Bayesian can model the frequentist process as a truncated distribution.
In the example, this leads to \(\pi_\text{post}(\theta \mid y) = \pi_\text{prior}(\theta)\).
More generally to an interesting class of models
Pragmatically: we rarely can build a good model of the selection
Should your inferences change when you learn that data collection stopped once \(p < 0.05\)?
Binomial model, max steps = 10000, optional stopping after each step
Stopping when 95% CrI excludes 0.5
Stopping when 95% CrI excludes 0.4 - 0.6
Stopping when the width of 95% CrI is < 0.1
Lukáš Beneda, CC BY-SA 4.0, via Wikimedia Commons
Authors of the study: Stefan Gustafsson, Erik Lampa, Karin Jensevik Eriksson, Adam S. Butterworth, Sölve Elmståhl, Gunnar Engström, Kristian Hveem, Mattias Johansson, Arnulf Langhammer, Lars Lind, Kristi Läll, Giovanna Masala, Andres Metspalu, Conchi Moreno-Iribas, Peter M. Nilsson, Markus Perola, Birgit Simell, Hemmo Sipsma, Bjørn Olav Åsvold, Erik Ingelsson, Ulf Hammar, Andrea Ganna, Bodil Svennblad, Tove Fall & Johan Sundström, CC BY 4.0, via Wikimedia Commons
McElreath: Full luxury Bayesian inference
Inverse probability of treatment weighting is the selection framework we discussed
Bergin, Jerry, Public domain, via Wikimedia Commons
Varying scale between groups already difficult in freq
Differential equations
hidden Markov models
Simulation-based inference (Bayesflow workshop yesterday)
Inferences on derived quantities, prediction intervals?
Just compute per sample!
Some questions don’t have freq answers without regularization (e.g. mean of general distribution).
Steve Evans from Citizen of the World, CC BY 2.0, via Wikimedia Commons
No!
We can rarely elicit and express precise enough priors
No!
In practice just fit a big model to all data.
No!
Severity of tests matters.
Especially no to Bayes factors.
And maybe you should too?
NASA's Scientific Visualization Studio - Advocates in Manpower Management, Inc./Sophia Roberts, University of Maryland College Park/Jeanette Kazmierczak, Public domain, via Wikimedia Commons
Slide & simulation sources:
https://github.com/martinmodrak/pragmatic-bayes